
Journal t~'Engineering Physics and Thermophysics, Vol. 73. No, 1,2000 

OSCILLATIONS OF A R O T A R Y  FLUID F L O W I N G  
O U T  OF  A C L O S E D  V E S S E L  

V. V. Orlov and A. N. Temnov UDC 532.5 

Consideration is given to the problem of the proper motion of a rotary, fluid that fills the entire cylin- 
drical tank in the presence of outflow through a rigid bottom. The problem is solved in a quasistatio- 
nal.'v .formulation within the framework of the ideal-fluid model with allowance for hydraulic losses in 
the .flow of the fluid through the bottom of the vessel. The spectrum of eigenvalues is investigated and 
the characteristics of wave motions of the fluid are revealed; the results of calculating the wave num- 
bers and the complex attenuation factor are given. 

Formulation of the Problem. Let an ideal incompressible fluid closed with a cover fill a cylindrical 
vessel of radius R0 to depth H and, in steady-state motion, rotate together with it about a fixed OX axis with 
a constant angular velocity COo and flow out through drainage surface Z with velocity Vz. We assume that when 
the fluid is flowing out the cover remains perpendicular to the axis of rotation at all times and any overflowing 
of the fluid through the cover is excluded. We denote the region occupied by the fluid by Q, a solid lateral 
wall by S, and a wetted surface of the cover by F. We introduce a moving cylindrical coordinate system 
Oxrq tied to the cover, i.e., rotating with angular velocity COo and traveling together with the cover with velo- 
city V0. 

Let us consider the problem of small natural oscillations of the fluid in a quasistationary formulation, 
assuming that the region occupied by the fluid has no time to change substantially in the characteristic times 
of its investigated motions. Then, to determine the field v---% v-'-~x, t) of the velocities of fluid particles relative 
to the steady-state motion, we have the following problem written in a moving reference system: 

0--£v~- 20) o (v---~x k 7-)) + Vp = 0 ,  (1) 
Ot 

V-v--)=O in Q,  (2) 

v--).n--~=0 on S w F ,  (3) 

=P-- on Z ,  (4) 
T 

~(x, 0) = ~ o  (x). (5) 

Here ~and ~ are the external normals to the surfaces S ~ F and Z, respectively; k-~is the unit vector directed 

along the Ox axis; p is the modified pressure p = P'; p'  is the deviation of  the pressure from the equilibrium 
P 

value; T = ~ ( V z -  V0), where ~ is the coefficient of resistance of the drainage surface. The condition on the 
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drainage surface is obtained based on linearization of the equation for a pressure difference on the drainage 

surface and is employed in calculating the dynamic characteristics of liquid-propellant rockets [1]. 

For the coefficient of resistance Y = oo (the absence of  drainage), problem (1)-(5) is a problem of the 
motions of a fluid that fills the entire circular cylindrical vessel. Its mathematical aspects are studied in [2-5]. 

A spectral problem with numerical calculations of eigenfrequencies that corresponds to it is contained in [6-8]. 
Eliminating the variable ~ w e  will seek a solution in the form of the traveling waves p(x, r, r I, t) = 

P(x, r) exp (inrrl--Da), m = 0, ±1, ±2 . . . . .  Then, in the moving coordinate system, the spectral problem tbr the 

circular cylindrical vessel can be written in the form 

ffx2(aeP t a p  m e O2e'~ 202p 
(--~5-? q P + 7 / + 4 e 0 0  = 0  in Q (6) 

, o r  7 a . , - )  ' 

~P 
= 0  on F ,  (7) 

0x 

~ :  0P (8) - 2 c o o ~ 2 i m p = o  on S 
r ' 

~ - ~ P + f 2 1 p = o  on 5", (9) 
~x ~' 

m = 0 , ± l , ± 2  . . . . .  

Here ~ is the complex attenuation factor of the wave motions of  the fluid. If we assume Im f2 > 0 the number 

m < 0 will correspond to the waves traveling in the direction of  fluid rotation, i.e., to forward waves, while the 
number m > 0 will correspond to backward waves. When m = 0 we have the case of standing waves. 

Model Problems. Study of model problems in the absence of rotation (¢o0 = 0) and in the absence of 
drainage (Y = oo) shows that in the system there can exist two forms of wave motions - the internal waves due 

to the presence of rotation and the waves on the drainage surface that will subsequently be referred to as drain- 

age waves. Unlike waves on a free surface, in the absence of drainage, drainage waves are motions aperiodic 

in time with the attenuation factor 

~mn = ~,m ~o tanh ~mn ~o , 

where ~m. are the zeros of the function dlm(~)lcl~; ,lm(~) is the mth order Bessel function of the first kind. The 
set of  the real numbers {f2m,}~l forms a discrete spectrum with the limiting point f2,~ ~ ~ when n , m - ~  oo 
[9]. 

The internal waves in the rotary cylindrical vessel filled entirely without drainage are oscillations with 

the frequency 

(Omn I =- 

2% 

~//l~mfl ~ 2 /' 
t t ) - ; )  + ') 

m = 0 , + l , + 2  . . . . .  n =  1 ,2 ,3  . . . . .  l = 1 , 2 , 3  . . . . .  
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The set of eigenfrequencies {(Omnl}~,l=l;m= 0 forms a limiting spectrum on the interval [0, i2o~], while the num- 
bers ~mnt are determined from the equation (see, for example, [6, 7]) 

Jm-l(~mn) m I q I I ~ l  ) I Jm(~mn) -~7,, 1+ +1 , / = 1 , 2 , 3  . . . . .  

Derivation of the Characteristic Equations of the Problem.  With the method of separation of vari- 
ables P(x, r) = X(x)R(r) we obtain the system of characteristic equations for determination of the dimensionless 
wave numbers 4 and {: 

7 tanh  ~.Jt- l (10) 

Jm-~ (~) m l l + i ~ - -  H 
, H -  (11) 

R0 

where 

=gR o" {=/~R 0. ~.- - - - ;  
2c% 2coati o 

R0 is the characteristic dimension of  the vessel; Jm(~) is the mth order Bessel function of the first kind, while 
the eigenvalue ~. is related to the wave numbers ~ and 4 by the formula 

~. = 4 (12) 

m 

The system of transcendental equations (10)-(11) with prescribed y and H will be solved for different 
numbers m = 0, +1, +_2 . . . .  that determine the oscillation modes of  the considered hydromechanical system. 

By the mode of the mth order oscillations we will mean the set of dimensionless wave numbers ~ and 
4 and the eigenvalue ~. together with the related eigen- and associated functions. 

Investigation of Transcendental  Equations. In the system of equations (10)-(11), the integral func- 
tions tanh ~/4 and fl(~) = Jm-l(~)/Jm(~) are transcendental meromorphic functions of the complex variables 
and 4, while the function f2(~, 4) = 4~ 2 -  4 2 is an irrational two-valued function with possible branch points 4 
= +~. Consequently, we can assume that system (10)-(11) will have the complex solutions 4 = 4 ~r) + i4 <i) and 

: U ) + i~% 
First of all, it is easy to show that the system of equations (10)-(l 1) with no m = 0, _+1, -+2 . . . .  has the 

following solutions: 

a) ~ = i ~ , ,  4 : i ~ , ,  ~o ,4o  ~ [~; 

b) ~ = i ~ , ,  4 = ~ ,  ~ , 4 0  ~ [~; 

c) ~ : ~ , ,  ~ = i ~ , ,  ~'~0,~) ~ [~" 

For a more complete investigation of transcendental equations (10)-(11), in what follows we will con- 
sider the cases of standing waves (m = 0) and traveling waves (m :/: 0) individually. 

In the case of standing waves, upon separation of the variables from Eq. (6) we obtain the classical 
Neumann problem for the Bessel function 
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- , R ( ~ f ) = O ,  7 = 1 ,  (13) 

where R(~)7) = Jo(~)7). Nontrivial solutions of problem (13) correspond to the discrete positive set of  the num- 
bers {~(), }~'=l with a unique limiting point at infinity and the asymptotic behavior of the numbers ~)n[10] 

rtn + 0 , 

Thus, to study the properties of the roots of characteristic equations (10)-(I 1), in the case of standing 
waves it will suffice to consider the first transcendental equation 

tanh ~ -  ¢J 1 (14) ~ '  ~,n ~ R '  ¢~=_--.y 

First, let us consider 4 to be a real number. Accordingly, we denote fI(4) = tanh ~t/ and f~_(~) = 
~ / ~ ,  0 < 4 < ~).- By direct computation of the derivatives we establish that the curve fl(4) is concave 
(fl"(4) > 0) and the curve ./2(4) is convex (f_g'(4) < 0) V 4, 0 < ~ < ~ . .  Consequently, the curves fl(4) and f2(4) 
can intersect at no more than two points. At the point of tangency of the curves, we have one double real root. 
If the curves fl(4) and f2(~) do not intersect and do not touch each other, Eq. (14) has two complex conjugate 
roots. The proof of the latter fact is similar to the_proof given in [11, 12]. 

It turns out that Eq. (14) for the same (J, H, and ~ , ,  for which it has two real or two complex conju- 
gate roots, also has an infinite set of simple complex roots {~)n/}~=l at any fixed number n. To prove this fact, 
we resort to the resolution of the meromorphic function fl(4) into partial fractions 

tanh ~_.fl = Z 

k=l 
(2k-  1) 2 2 

4 + (C]~)2 

and set up the approximating equation 

FL (4) =ft  L (~) 
(5 

%:° _ ;2 m = O ~  

where 

#(4)-- E 
k=l 

2 r f l  

(2k-  1) 2 

Let 4 = ¢(r)+ i4(i); having represented the approximating function FL(4) in the tbrm 

F L (4) = uL (¢(r), ¢(i)) + iv L (¢(r), ¢(i)) , 

we obtain the approximating system of equations 

L u (4 (°, = 0 , V L (¢(r), 4(0) = 0 .  (15) 

Let us resort to a graphical solution of the system. 

In Fig. 1, in the plane of the variables 4 (r) and 4 (i) for the case where there are two real roots in the 

solution of Eq. (14), geometric images of the equations uC(~ (r), ~(i)) = 0 (the solid line) and vL(~ (r), ~(i)) = 0 (the 
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~ ( i )  

4 

2 

0 
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- 4  

- 6  

. . . . . . . . . .  " - - : - , - :  :: . . . . . . . . . .  : . . . . . .  . . . . . .  I 

. . . . . . . . . . . .  ~,,,, ~% =o 

- 0 t 2 3 ~'~ 
Fig. 1. Graphical solution of system (15). 

dash-dot line) are constructed at L = 3. Their intersection points yield the sought r o o t s  ~aOnl of system (15) for 

each fixed number n. As is seen from the graphical solution the complex roots ~)/n are grouped along the 

2~rt the functions f~(~) imaginary axis; ~<rl > 0. Because of  the convergence of the series ~ ( 2 k -  l)2rt2 
( ~ 9  2 k=l + 

will converge to the function fl(~) when L--~ ~, while the functions Ft(~) will converge to the function F(~) 

= tanh ~..3t/- ~ .  According to the Hurwitz theorem [13], the roots of  Eq. (14) will be a limit of the 

roots of the equation Ft'(~) = 0 when L ~ oo. 

In the case of m = 1, we will write system (10)-(11) as 

tanh ~ = 1 (16)  

- 1 +  
g~ (~) 

Employing the relations for the Bessel functions, we rewrite (17) in the tbrm 

J,'l" (~)(~) _ ~1 i ~/~2~_ ~2 1 ) 

and as in the case m = 0 we reduce the system to one equation 

F (~,) = O, 

where 

J2 

F~)= 

Jl 

,/( + 21J 
,i. 

(tanh ~fl/ (tanh" Eft-/ 

(17) 

(18) 

(19) 
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Unlike the case m = 0, where n was fixed and the complex roots ~0./determined from formula (14) formed in 
the vicinity of the imaginary axis, for m = 1 the parameters ~ are computed upon finding the numbers ~ from 
(19). In this case, there is an infinite set o f  complex roots {~ln/}~L.=l that form both along the imaginary and 
real axes of  the plane of the complex variable 4- 

To prove this tact, we resort to the resolution of the Bessel function into partial fractions [10, p. 549] 

N 
4 ( D  2 

k=l 

and set up the approximating system of  equations 

N ~(i)) ~(i)) // (~(r) : 0 ,  V N(~(r), = 0 .  (20) 

Using the same line of reasoning as in the case m = 0, we see that Eq. (18) has the infinite set of  

complex roots { ~l,,/}~=l. ,=l- 
Eigenvalues and Eigenfunctions.  Upon determination of the wave numbers ~ = ~(~)+ it (i), using for- 

mula (12), we can find the eigenvalues ~mnl and eigenfunctions that correspond to them and determine the 
oscillation modes. To identify the oscillation modes, we resort to the asymptotic form of large indexes in the 
case of  both standing and traveling waves. 

Asymptotic form of large indexes at m = 0. We consider the asymptotic behavior of  the roots of  Eq. 
(14). Let n be fixed (~)n = const). With large / the solution of  Eq. (14) will be sought in the form 

I n  (21) ~,nl=i-:-+i~l,  i = ~ - 1 ,  13/---->0, 1--+~,. 
H 

Having substituted (21) into (14), upon simple manipulations we obtain the asymptotic expression tbr the roots 
of (14) 

X / /  - - ~ H ~ / + - I  +o ( I -3 ) ,  I - - + ~ .  (22) 
¢,,, = i --ff ,1 7 n- / ' )  Tln 

Let l be fixed now (1 = -1 ,  / = -2) .  When ,l ~ ,,~ ( ~ ,  --+ ,,~) the root ~0.,,-1 "+ ~), (n --+ oo) and ~kn.-2 
tends to 0. Therefore we will seek ~.n,-1 and ~0.,,,-2 when n--+ ,,o in the torm 

~),.,-1 = ~) .  - e,,.-I • ~)...-2 = 0 + e..-2 - 

Having substituted these values into (14) and having determined e,_l and en,-2, we obtain the asymp- 
totic expression of the roots of Eq. (14) when n--+ ~: 

2 
O" 

= o 2{. 
(23) 

- + o (  ) ,  n - ~ .  (24) 

When ~)nl and ~0, are known the eigenvalues ~0nt and hence the complex attenuation factor D~)n/ = 
2O)o~)n I of initial spectral problem (6)-(9) can be determined by the formula 
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\ / 

The eigenvalues ~ l , / cor respond to the eigenfunctions of  problem (6)-(9) 

/ x ,26, e0,t (x. '9 = J0 ~l. cosh ~,/R-o" 

Let us show that the eigenvalues X0n# (l = 1, 2, 3 . . . . .  n = 1, 2, 3 . . . .  ) correspond to wave motions in 
the rotary fluid with the maximum intensity deep within the fluid, i.e., the internal waves. For this purpose, we 
resort to asymptotic expression (22) for the wave numbers ~0,,1 (/--+ ~,, n is fixed). Having substituted ~),a into 
the expression for the eigenvalue ~., we obtain 

2 

X~,., = -~  2 = 

- 2 _----~ (i + 1) + o  (l-4)/  
H 2 [ ytCl- 

] 

_4, 
+ 1 - 2  t ( i + 1 ) + o ( / )  

* (/-2 =i0~0n / ( l+o  ) ) ,  1--+oo, n = 1 , 2 , 3  . . . . .  

, , -  ,~.,~ ,~..~ \1/2 

where 0)o,,/ = I--~-- ~'in ~ 7 -  / is the dimensionless frequency of natural oscillations of the rotary fluid i l i a  
/ 

cylindrical vessel with circular cross section without outflowing and with complete  filling. As the asymptotic 

representation for the wave numbers ~,,# and expression (26) yield, these wave motions are described by the 

eigenfunctions 

Ponl (x, r) Jo (~,,, r ] = COS ~ X. 
[ R°) H 

We now direct our attention to asymptotic expressions for the wave numbers ~)nl (l = -1 ,  -2 ;  n ~ oo). 
We will show that the eigenvalues ~)nl, in this case, will correspond to the wave motions of  the fluid with the 
maximum intensity on the drainage surface. We consider first the situation where 1 = -1 .  Having substituted 
~ln/from (23) into (25), we obtain 

171 



~'~).n.-I = 4 

2 

/ 2 / _ ~ - 2  

~n 2 ~  n + o (~),,) 

2 

"-2T,,, 

= , - o (  ) = - - + o t c a ~ , ) ,  n - - + ~ ,  
(y 

i.e., the dominant term of asymptotic form (27) coincides with the dominant term of the asymptotic form for 
drainage waves [13]. The solution Po, n._l(X, r), in this case, permits the conclusion of  the scale of fluid motion 
decreasing with distance upward from the drainage surface. Thus, the eigenvalue obtained by formula (27) at 
/ = -1 and the eigenfunction at / = -1 determine the drainage waves. We now consider ~, , /at  / = -2.  We will 
show that in this case, too, the eigenvalue X0.,.-2 and the eigenfunctions Po,n.-2 will also determine the drainage 
waves but with another waves number. Having substituted (24) into formulas (25) and (26), we have 

2 

LLH ,.) I 

vo :=4 - -  I - -  "~ I 

LLH ,.) J 

PO.,,.-2 (x, r) = Jo r cosh I ( - - "  + 0 (~3) X n ---) ~ .  (28) 

LLH '. )] &' 
By employing eigenfunctJon (28) it is easy to show that the scale of fluid motions decreases with dis- 

tance upward from the drainage surface and hence solution (28) also describes the drainage waves. 
Asymptotic form of  large indexes at m = 1. Using the asymptotic form of  large indexes n --+ ~,  we can 

also obtain the asymptotic expressions for the roots ~l~/and ~ha, which turn out to be equal to 

l )  2 ( ~ 1  1 / , ( r ) . ~ ( i )  
- -  " = g l n l  + I g l n l  (29) ~lnl=l~ n - 4  ~2 i~2 i l 2 ~2n5 5 

~lnl=~ rl-- --I --,.~lnl-'}-l(.alnl. 

The eigenvalues ~h,/ and ~l,t correspond to the eigenfunctions of problem (6)-(9) 

Plnl (X, r) = Jl lnl cosh ~lnl Ro 

=J, ~,nl cosh~ln/~0 ° OS~ln l~o+i tanh~in ,~os in  . (31) 

Expression (31) and asymptotic formulas (29) and (30) show that the scale of  fluid motion decreases 
with distance upward from the drainage surface and hence the solution that describes the eigenvalues ~ln,-I and 
)q..-2 describe the drainage waves. 
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Fig. 2. Arrangement o f  the eigenv__alues ~, that co r respond  to internal 
waves on a complex plane, m = i, H = 2, and ~ = 1. 

TABLE 1. Results of  Computation of  ~nl, ~l,,z, and ~,lnz at m = 1, H = 2, and ~t = 1. 

2.005093-0.363113i 1.750099-0.417056i 

3.839011-0.133749i 0.133214+0.004876i 

~'lnl 

1.749649-0.420305i 

0.034634+0.002480i 

5.331849-0.037131i 

7.016704-O.071854i 

8.536351-0.014011i 

10.173829-0.049342i 

4.752236-4).025349i 

4.970592-0.006356i 

5.046163-0.002229i 

7.971489-0.016563i 

8.209625-0.004750i 

8.297002-0.001929i 

-1 

-2  

-1 

-2  

1 
2 

3 

1 
2 

3 

5.237239--0.037802i 

0.071742+0.000744i 

8.477576~).014108i 

0.(~9304+0.000240i 

0.101254+1.571957i 

0.085858+3.142355i 
0.072924+4.712939i 

0.061854+1.571013i 

0.057129 +3.141755i 

0.052593+4.712542i 

5.237239-0.037802i 

0.010222+0.000210i 

8.477576-0.014108i 

0.00A846+0.000047 i 

0.016723+0.314282i 

0.009942+0.534485i 

0.005479+0.682624i 

0.006941 +0.193388i 

0.005488+0.357435i 

0.004080+0.493894i 

11.143644-0.012224i 

II.389063-0.003671i 

11.481040--0.001583i 

0.044547+1.570869i 

0.042422 +3.i41646i 

0.040375+4.712443i 

0.003731+0.139592i 

0.003257+0.265921 i 

0.002739+0.379718i 

Computation of the Roots of the System of  Transcendental Equa t ions .  The numerical solution of  

system (10)-(11) is obtained with the Newton method of  successive iteration. Upon finding the roots of  ~ and 
the eigenvalues ~, are computed by formula (12). 

The diagram in Fig. 2 shows the distribution of  the complex attenuation coefficient ~, o f  the internal 

waves of  nonaxisymmetric oscillations (m = 1) on a complex surface. It is seen that the spectrum is a discrete 
set of  roots with the accumulation points on the interval [0i; 1i]. 

Table I shows values of  the wave numbers ~ and ~ and the eigenvalue ~ at n = 1, 2, and 3 and 1 = 
- 2 , - 1 ,  1, 2, and 3. 

Conclusions. The investigation performed permits the following conclusions. 
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1. The set of normal modes consists of  internal waves and drainage waves. The intemal waves are 
characteristic of a rotary fluid and occur throughout its entire volume. The drainage waves are generated on the 
drainage surface; the scale of these motions decreases with distance deep into the fluid. 

2. Both the internal and drainage waves are oscillatory motions attenuating in time. The presence of the 
drainage surface transforms the internal waves from oscillatory motions with a constant amplitude and a limit- 
ing spectrum to decaying oscillations with a discrete spectrum, while rotation transforms aperiodic motions on 
the drainage surf'ace to decaying oscillations and generates an additional set of  drainage waves with the limit- 

ing point of the attenuation factor at 0. 
3. For standing waves (m = 0), there can exist such a relation of the rotational velocity o~0 to the 

resistance to drainage 7, for which the drainage waves are purely aperiodic motions. 
4. In the case of traveling waves, the presence of both forward waves propagating in the direction of 

rotation and backward waves is possible. The frequency of the backward waves is higher than the frequency of 
oscillations of the forward waves of the corresponding tone. 

N O T A T I O N  

Q, region occupied by the fluid; F, wetted surface of the cover; S, solid lateral wall; E, drainage sur- 
face; ~ velocity field of fluid particles; p, modified pressure; R0 and H, radius and depth of the vessel; 7, 
coefficient of resistance to drainage; p, density of the fluid; ~., eigenvalue of the problem - the complex attenu- 
ation factor; ~ and ~, dimensionless wave numbers; V0, descent velocity of the cover; Vz, rate of  discha~e of 
the fluid through the drainage surface Z; Im f2, imaginary part of the number f2; ~,  set of the real numbers. 
Subscripts: L and N, numbers of the terms of  resolution in the corresponding finite sums of approximating 
expressions; (r) and (i), real and imaginary parts of the number. 
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